...III.........................'I..I.I.'.......ll.l'....II.“......II"........

..'.'.......................-............-.-...-...'..I

STORAGE

speedy DRAM
could replace
nard aisks for
cloud computing

WHEN IT COMES TO COMPUTER STORAGE, the magnetic disk
has been top dog for almost half a century. The first com-
mercial disks appeared in 1956, and by the early 1970s their
cost and capacity had improved to the point where they
began to replace magnetic tape as the primary storage
medium for computers. By the end of that decade, tapes
had been relegated mostly to a backup role. Since then,
disk technology has improved at an exponential rate, just
like integrated circuits. Nowadays, a typical drive holds
20,000 times as much data as it did in 1985, and on a per-
byte basis, disks cost one-millionth of what they did then.

No wonder hard disks are so pervasive. This is also why
today’s popular forms of computer storage, such as file
systems and relational databases, were designed with
disks in mind. Indeed, until recently any information
kept on a computer for more than a few seconds proba-
bly ended up on disk. @ But the hard disk’s reign may be
coming to an end. The most obvious challenger is flash
memory, which is faster, more compact, and more resis-
tant to shock. Virtually all mobile devices, such as tablets,
smartphones, and watches, already use flash instead of
disk. Flash memory is also displacing hard drives in lap-
tops and, increasingly, in large-scale applications running
in data centers, where its speed is a significant advantage.

32 | HOV 2015 | INTERHATIOHAL | SPECTRUM.IEEE.ORG

by JOHN
OUSTERHOUT

ILLUSTRATION BY Greg Mably

RN EER BN NAE
REN REERER

EER 0 RN 1
I RRERE W1
BER ED ED OB

Now though, there is yet another
alternative to disk: using dynamic
random-access memory (DRAM) as the
primary storage location for long-lived
data. More and more applications, par-
ticularly large-scale Web applications,
are keeping most or all of their data in
DRAM. For example, all of the popular
Web search engines, including Google,
service people’s queries entirely from
DRAM. Also, Facebook keeps most of its
social-network data in DRAM. And IBM’s
Watson artificial-intelligence system kept
all of its data in DRAM when it won the

“Jeopardy!” challenge a few years ago.

On the surface, this seems ridicu-
lous. After all, DRAM was intended
to hold information temporarily dur-
ing active computations. Although it is
about 1,000 times as fast as flash, it is
also 100 times as expensive as disk, and
it is volatile, which means that the data
it holds will disappear if the computer
loses power. Nevertheless, I believe that
DRAM could soon become the primary
storage medium for large-scale appli-
cations running in data centers. Here’s
why: If DRAM is backed up on disk or
flash, users can enjoy the medium’s huge
speed advantage without worrying that
data will be lost during the inevitable
server crashes and power outages.

As aresearch project, my colleagues
at Stanford University and I have con-
structed a general-purpose storage sys-
tem we call RAMCloud, which keeps
all of its data in DRAM at all times.
RAMCloud aggregates the DRAM memo-
ries of a collection of servers—potentially
hundreds or thousands ina typical data
center, To work around DRAM’s volatil-
ity, RAMCloud stores copies of data on
disk or in flash memory, and it automati-
cally recovers data from those backups
after a server crashes. Our hope in the
RAMCloud project is to make it as easy
for developers to use DRAM-based stor-
age as it is for them to use disk.

OUR MAIN MOTIVATION FOR MOVING FROM
disk to DRAM comes from the evolution
of disk technology. Although the stor-
age capacity of disks has mushroomed
over the years, their access speed has
not improved as much. The reason for

34 | MOV 2015 | INTERHATIOHWAL | SPECTRUM.IEEE.ORG

Application Storage
Servers Servers

USER-
INTERFACE APPLICATION
CODE LOGIC DATA

TRADITIONAL APPLICATION WEB APPLICATION

WEB-SCALE APPS

Traditional applications manipulate data held in the memory ofa
single machine [left]. But large-scale Web applications require
amore complicated architecture [right], with many different
computers in a data center running the application logic and the
server-side user-interface code. Other computers act as storage
servers. They keep the bulk of the data on disk with only the most
recently accessed information held in memory.

Application Storage
Servers servers

o DATA-GENTER N
= NETWORK s

P
eee = . ¢ g

USER- APPLICATION . MASTER BACKUP
INTERFACE LOGIC _
CODE

COORDINATOR

UP WITH DRAM

RAMCIloud’s storage servers have lots of DRAM (from 32 to

256 gigabytes on each machine)—enough in aggregate to hold
all of the data. Those storage servers also contain hard disks
and a small amount of battery-backed DRAM, together used for
backup copies of data from other servers. A separate machine,
called the coordinator, manages the communications between
application servers and storage servers.

. BUFFERED SEGMENT DISK
WRITE REQUEST M i e

\/

e]]
MASTER

BACKUPS

WRITE THREE DEEP

When a RAMCloud storage server receives arequest to store a
chunk of data, it adds the information to its master copy of the
data in DRAM, which takes the form of an in-memory log. That
storage server also backs up the newly recorded information
on at least three other storage servers, which save redundant
copies of the data, initially in battery-backed DRAM and then
ondisk.

DEAD
MASTER

RECOVERY

CRASH N’ BURN

When a storage server crashes, the datait held in DRAM must

be reconstituted—fast. For that, several existing servers are
assigned to act as recovery masters, restoring different portions
of the lost data and taking ownership of it. Each recovery master
reads from multiple disk backups, speeding the recovery process.
With enough servers working together, hundreds of gigabytes can
bereconstituted in justa second or two.

this is simple enough. To read or write
data on a hard disk, a physical mecha-
nism must first position the read-write
head over a particular track on a spin-
ning platter. Then the system must wait
until the desired information rotates
under the head. These mechanical pro-
cesses have proven difficult to speed up
much. With the amount being stored on
a disk increasing more rapidly than the
access rate, the time needed to read or
write all the data on a disk has increased.
Indeed, if the information you need is
stored in small blocks spread randomly
on the disk (which is common in many
applications), the time it takes to hunt
down the data becomes significant. Even
if you dedicated your computer to that
task, to access each block in random
order could take a few years!

This problem is making disks increas-
ingly unsuitable for storing small pieces
of data that must be accessed frequently.
In a sense, the hard disk is putting itself
out of business. This trend has been evi-
dent for many years and explains much
of the interest in flash memory, with its
higher access rates.

There is a second motivation for new
storage technologies that’s even more
compelling: the rise of large-scale Web
applications. These applications some-
times need to support tens or even hun-
dreds of millions of users. Doing that
requires a radically different opera-
tional structure than what has been
used traditionally.

The old approach was to load the appli-
cation’s code and all of its data into the
main memory of a single machine. The
application could then access its data at
DRAM speeds (typically 50 to 100 nano-
seconds), which allowed it to manipulate
its data intensively. The problem was
that the total throughput of the appli-
cation was limited by the capabilities
of that one machine.

As the Web grew in popularity during
the late 1990s, it quickly became clear
that the traditional application archi-
tecture could not handle the loads gen-
erated by popular websites. Over the
next 10 years, designers came up with
anew architecture in which thousands
of machines work together in huge data

SPECTRUM.IEEE.ORG | INTERHATIOMAL | MOV 2015 | 35

—

centers. One of the most important attri-
butes of this arrangement is that applica-
tion code and data are separated. One set
of machines (called application servers)
runs the applications, while a different
set of machines (storage servers) holds
the data. In this architecture, data is
typically stored on disk, although fre-
quently needed data may be held for
quick access (cached) in DRAM.

This new architecture has enabled
the creation of applications of a scale
that was unimaginable 20 years ago-—

developers, who must labor to pack the
most information possible into the small-
est number of distinct chunks.

OUR AWARENESS OF THESE PROBLEMS
spurred my Stanford colleagues and
me to start the RAMCloud project in
2009. We figured that if we could speed
up data access, it would make an enor-
mous difference. Facebook is one exam-
ple of an application that could benefit,
but we believe there are many more
things that are not even attempted

DESIGNED FOR SWAPPING: Servers can be replaced quickly. But even so, if DRAM is used for
long-term storage, crashes remain problematic. RAMCloud automates data recovery, restoring
within just a couple of seconds the information lost when a server fails, so users don't notice.

Facebook and Google Search come
to mind-but it has also changed the
relationship between an application
and its data. In the Web architecture,
each read or write access requires an
application server to communicate over
the data center’s internal network to a
storage server, and the storage server
may additionally have to perform a disk
access. The total time to fetch a chunk of
data is now 0.5 to 10 milliseconds, four
to five orders of magnitude longer than
what it would be with the traditional one-
machine-does-everything architecture.

As a result, Web applications can-
not use their data very intensively. For
example, when Facebook generates a
Web page for a user, it can consult only
a few hundred distinct pieces of data:
Anything more would take intolerably
long. This restriction limits the kinds of
features that Facebook can provide, and
it makes life difficult for the company’s

today because no storage system can
support them.

To achieve that speed boost, RAMCloud
keeps all datain DRAM at all times, but
it also makes the data just as reliable as
if it had been stored on disk. RAMCloud
doesn’t require any sort of exotic hard-
ware to do so. Indeed, it’s just a software
package that runs on ordinary machines—
RAMCloud servers, which take the place
of today’s storage servers.

Each RAMCloud server contains two
software components: a master and a
backup. The master code uses most of the
server’s DRAM to store RAMCloud data,
and it makes that data available to the
applications servers that request it. The
backup code’s job is to keep redundant
copies of the data from other RAMCloud
masters in the server’s secondary stor-
age (on disk or in flash memory).

A third software component of
RAMCloud, the coordinator, runs on a

36 | HOV 2015 | IHTERHATIOMAL | SPECTRUM. IEEE.ORG

separate machine. It manages the overall
configuration of the RAMCloud cluster
and coordinates recovery actions when
storage servers fail. The various appli-
cation servers running in the data cen-

" ter use a RAMCloud library package to

access RAMCloud storage. The first time
they do so, those application servers
must contact the RAMCloud coordinator
to find out which masters store which
data. The application servers then cache
this information locally, so subsequent
RAMCloud requests can go directly to
the relevant master.

While the RAMCloud servers are
intended to take the place of normal
storage servers, they can’t entirely rep-
licate what today’s database servers do.
RAMCloud’s data model is a key-value
store, which consists of a collection of
tables, where each table can contain any
number of objects. Each object consists
of a variable-length key, which is unique
within its table, and an associated value,
which can be a blob of arbitrary data
up to 1 megabyte in size. Applications
read and write objects on a RAMCloud
server simply by specifying a table and
a key within the table. RAMCloud does
not currently support all of the features
of a database system, such as secondary
indexes and transactions.

While some will see this feature deficit
as a shortcoming, duplicating the func-
tionality of today’s database servers
was not our goal. Our most important
design imperative for RAMCloud was to
achieve the fastest possible access times,
defined as the total time, measured by
a running application, to read or write
small chunks of data that are stored ina
RAMCloud server in the same data center.
With the current version of RAMCloud,
reads take about 5 microseconds (writes
take about 14 ps) for 100-byte objects.
That’s roughly 1,000 times as fast as you
could read data from a local hard disk
and 10 to 20 times as fast as you could
get that data from local flash memory.

When we began the RAMCloud proj-
ect, access times like these were almost
inconceivable. Even with data stored in
DRAM, the networking infrastructure
itself imposed significant delays. Each
switch in the data-center network added
10 to 30 ps, and the request for data, and
the supplied response, could each have

to go through as many as five switches
in alarge data center. And data packets
had to be processed by the operating sys-
tem when entering or leaving a machine,
which added roughly 60 ps. So typical
round-trip times within a data center
were hundreds of microseconds long.

Two improvements in networking
have made RAMCloud’s blazing speed
possible. The first was a new kind of net-
working infrastructure that uses special-
purpose switching chips with internal
delays of less than 1 ys per switch. The
second was a new generation of network-
interface controllers (NICs), which have
a capability called kernel bypass. This
feature allows an application to commu-
nicate directly with the NIC to send and
receive packets of data without involving
the computer’s core operating system.

The combination of fast-switching
chips and kernel bypass makes ultralow-
latency communication possible:
less than 5 ps for requests that need to
pass through only a few switches (such as
in our test cluster), and around 10 ps for
requests in a very large data center with
100,000 machines. With the additional
improvement in networking technol-
0gy wWe expect to see over the next 5 to
10 years, we believe that round-trip times
in a large data center could be reduced
to as little as 2.5 ps.

IN ADDITION TO PROVIDING FAST ACCESS,
RAMCloud must also ensure that its
data is stored as reliably as if it were
held on disk. In particular, data must
not be lost when a server crashes or
the power goes down. Data centers
typically lose power every few years,
which can cause all the information
in DRAM to be lost. As mentioned ear-
lier, RAMCloud keeps backup copies of
data on disk or in flash memory. (This
scheme is analogous to the way that cur-
rent disk-based storage systems keep
backup copies on magnetic tape.)

But what if an individual RAMCloud
server failed? To protect against such
mishaps, RAMCloud keeps multi-
ple backup copies (typically three) of
every single piece of data, storing those
on different servers. So when a write
request arrives at a master, it updates
its information in DRAM and then for-
wards the new data on to several backup

RAMCIloud servers. This need for repli-
cation explains why writing data takes
longer than reading it.

In addition to these general measures,
we had to solve two specific problems
to make RAMCloud’s backup strategy
really bulletproof. The first was what
to do if a server loses power before it
has made backup copies. RAMCloud
deals with that possibility using a small
amount of nonvolatile memory on each
machine. When new data is written to
one machine, the backup machines asso-
ciated with it collect that data temporar-
ily in some form of fast but nonvolatile
memory. That could take the form of
battery-backed DRAM, for example.
These backups then write the data to disk
or flash in the background. Having the
data in fast nonvolatile memory at the
start ensures that the information can
be recovered if a power failure occurs
before the data is written to disk or flash.

The second problem is thata RAMCloud
cluster with thousands of servers will
inevitably experience frequent server
crashes. RAMCloud keeps only a single
copy of information in DRAM, so data
that was stored on a crashed server will
be unavailable until it can be recon-
structed from information on the hard
disks (or flash memories) of its backups. If
all the crashed machine’s data were held
on one other disk, it would take several
minutes to get it into working memory.

To avoid that long a delay, RAMCloud
scatters the backup data for each mas-
ter across all of the other servers in the
cluster, which could amount to thou-
sands of machines. After a crash, all
of those machines work in parallel
to reconstruct the lost data. With the
work spread among so many comput-
ers, RAMCloud can recover from server
failures in just 1 to 2 seconds—so fast that
most Web users wouldn’t even notice.

ALTHOUGH RAMCLOUD IS JUST AUNIVERSITY
research project, our goal was to cre-
ate a production-quality system that
can be used for real applications. At
the beginning of last year, the system
reached version 1.0: The basic fea-
tures were in place, and the software
was mature enough for early adopt-
ers to begin experiments. Since then,
several groups outside Stanford have

begun experimenting with RAMCloud’s
open-source code, for such things as the
Distributed Main Memory Database proj-
ect at telecom giant Huawei,

One possible impediment is that
RAMCloud does not support the relational
data model that dominates information
technology today. It does not provide the
convenient facilities of a relational data-
base management system, so many appli-
cations would have to be reprogrammed
to use it. But that’s perhaps not as big
an issue as it would appear. The applica-
tions for which RAMCloud would be most
advantageous haven’t yet been written,
simply because there is no storage system
capable of supporting them.

So RAMCloud’s early adopters are not
likely to be those using existing enter-
prise applications. Instead, the first users
will probably be developers who dis-
cover that today’s storage systems are
justnot fast enough to meet their needs.
These groups can design their applica-
tions around RAMCloud from the start,
and they should be more willing than
most to try it out. Desperate people are,
after all, the friend of new technology!

If RAMCloud proves successful with
its early adopters, it may not be long
before it spreads into the mainstream.
RAMCloud is a good match for cloud-
computing data centers such as Amazon
Web Services, Google Cloud, or Microsoft

Windows Azure. Insuch an environment,
the cost of a RAMCloud cluster could
be amortized across many users, who
could then take advantage of high-speed
storage at very low cost, while retain-
ing the ability to expand easily as their
needs grow.

RAMCloud represents a new class of
storage that simultaneously achieves
vast capacity and low latency. It would
let something like a million CPU cores
within a data center work together on
data sets of 1 petabyte or more, where
any core canaccess any data itemin 5 to
10 ps. That's one-thousandth of the time
ittypically takes now. Soif you're already
impressed by the speed and power of
today’s large-scale Web applications, fas-
ten your seat belt and get ready for even
bigger thrills in the future. m

POSTYOUR COMMENTS at http:#/spectrum.
ieee.org/ramcloud1115

SPECTRUM.IEEE.ORG | INTERNATIOHAL | HNOY 2015 | 37

